0=-16t^2+2722

Simple and best practice solution for 0=-16t^2+2722 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+2722 equation:



0=-16t^2+2722
We move all terms to the left:
0-(-16t^2+2722)=0
We add all the numbers together, and all the variables
-(-16t^2+2722)=0
We get rid of parentheses
16t^2-2722=0
a = 16; b = 0; c = -2722;
Δ = b2-4ac
Δ = 02-4·16·(-2722)
Δ = 174208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{174208}=\sqrt{64*2722}=\sqrt{64}*\sqrt{2722}=8\sqrt{2722}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2722}}{2*16}=\frac{0-8\sqrt{2722}}{32} =-\frac{8\sqrt{2722}}{32} =-\frac{\sqrt{2722}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2722}}{2*16}=\frac{0+8\sqrt{2722}}{32} =\frac{8\sqrt{2722}}{32} =\frac{\sqrt{2722}}{4} $

See similar equations:

| 0=6(2b-4) | | 7x+2+3=42 | | 1.8+1/2k=-16 | | 6x+2+3x+5(6-x)+2(x+4)+-(5-x)=45 | | 20/9=10/s+2 | | 6=(2b-4) | | 3/8=2/w | | 8+4w=-16 | | 3x-(-1)=-1 | | D(p)=6p+210/12p+15 | | 5x-40=-15 | | 63=-7h | | 4+2q=18 | | 5(2x+1)=-49 | | 3x-5x-3=-1 | | s/5=13 | | 1q+14=8q+7 | | x^2-8+45=0 | | 3(3x–4)=–9x+11 | | 8x-16=3x+10 | | -1d+1/3-5/6=0 | | 5(x-2)/3=-4x | | 3x+1/2x+3=3/2-7/2(2x+3) | | -1(-8+8c)=1/8(-64-64c) | | 5/6n-2=1/6n+14 | | 9x-16=4x+8 | | 5/6r=43.5 | | 4x-40=-48 | | 5x-8=11-7x+21x | | a1=-4 | | -7x-21=-49 | | 4x²+5x-15=0 |

Equations solver categories